MATH 514

"Approximation Theory"

- 1. Polynomial Interpolation
 - Lagrange form
 - Divided Difference and Newton form
 - The k-th Divided Differences
 - Osculatory Interpolation
 - Evaluation of Newton form
- 2. Limitation of Polynomial Interpolation with Range example
 - Chebyshev Points
 - Interpolation at Chebyshev Points
- 3. Piecewise Linear Approximation
 - Broken Line Interpolation
 - Optimality of Broken Line Interpolation
 - Least-Square Approximation by Broken Lines
- 4. Best Approximation Properties of Complete Spline Interpolation and its error
 - Quadratic and Parabolic and Spline Interpolation
 - A representation for piecewise Polynomial Functions
 - Piecewise Polynomial Functions
 - Definition of Piecewise Polynomial Representation
- 5. Piecewise cubic Interpolation
 - Cubic Hermit Interpolation
 - Cubic Bessel Interpolation
 - Akima's Interpolation
 - Cubic Spline Interpolation

- 6. The Space $P_{k,\zeta,v}$ and the Truncated Power Basis
 - The Smoothing of a Histogram by Parabolic Splines
 - The Space $P_{k,\zeta,\nu}$
 - The Truncated Power Basis for $P_{k,\zeta}$ and $P_{k,\zeta,\nu}$
- 7. The Representation of Piecewise Polynomial Functions by B-Spline
 - The definition of B-Spline
 - A sequence of Parabolic B-Spline
 - Definition of Splines
 - Curry-Schoenberg Theorem
 - B-Representation
 - Conversion from One Representation to the other
 - The stable Evaluation of B-Splines and Splines
 - A Recurrence Relation for B-Splines
 - To plot B-Splines
 - Differentiation
 - Integration
- 8. Surface Approximation by Tensor Products
 - Tensor Product of two linear Spaces of Functions
 - The Calculation of Tensor Product Interpolant
 - Tensor Product Spline Interpolation
 - The Piecewise Polynomial-Representation of Tensor Product Spline Conversion from B-representation to Piecewise Polynomial-Representation

References:

- 1. A Practical Guide to Splines by Carl de Boor
- 2. Approximation Theory by **Powel**

- 3. Spline Analysis by M. H. Schultz
- 4. An Interpolation to Splines for use in Computer Graphics and Geometric modeling by **Barlles and Betlds Barsky**